A Numerical Algorithm for Arbitrary Real-Order Hankel Transform
نویسندگان
چکیده
The Hankel transform is widely used to solve various engineering and physics problems, such as the representation of electromagnetic field components in medium, dynamic stress intensity factors, vibration axisymmetric infinite membrane displacement factors which all involve this type integration. However, traditional numerical integration algorithms cannot be due high oscillation characteristics Bessel function, so it particularly important propose a precision efficient algorithm for calculating integral oscillation. In paper, improved Gaver-Stehfest (G-S) inverse Laplace method arbitrary real-order function presented by using asymptotic accumulation integration, optimized G-S coefficients are given. effectiveness verified examples. Compared with linear transformation accelerated convergence algorithm, shows that suitable real order transform, time consumption relatively stable short, provides reliable calculation study mechanics, wave propagation, fracture dynamics.
منابع مشابه
An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولHankel Complementary Integral Transformations of Arbitrary Order M . Linares Linares
Four selfreciprocal integral transformations of Hankel type are defined through I,Cy) fo’,Cx),,,Cxy)Cx, ’ where 1,2,3, 4; Ix 0; ct(x) x /, g,(x) x-J(x), J(x) being the Bessel function of the first kind oforder Ix; th(x) x1-2, g2,(x) (-1)x2gt,,(x); tx3(x) x--2, ,qx,(x) x /,q,,(x), and ct,(x) x 2, g4,(x)(-1)xgLa(x). The simultaneous use of transformations Y/’I, and /’z, (which are denoted by allo...
متن کاملBounding Functions Via n-th Order Hankel Transform
In this presentation we establish new bounds on functions, which have their n-th order Hankel Transform bandlimited. This class of functions is proved to be also Fourier Transform bandlimited. N-th order Hankel Transforms and the consequent bounds are important for the reconstruction in CAT, MRI (Magnetic Resonance Imaging) etc. Indeed many algorithms of modern tomography use the appropriate fo...
متن کاملAn Efficient Algorithm for Computing Zero-Order Hankel Transforms
Postnicov [22], in 2003, proposed an algorithm to compute the Hankel transforms of order zero and one by using Haar wavelets. But the proposed method faced problems in the evaluation of zero order Hankel transform. The purpose of this paper is to overcome this problem and obtain an efficient algorithm for evaluating Hankel transform of order zero by using rationalized Haar wavelets. Exact analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Wuhan University Journal of Natural Sciences
سال: 2022
ISSN: ['1007-1202', '1993-4998']
DOI: https://doi.org/10.1051/wujns/2022271026